Abstract

Aqueous-processed aluminum oxide phosphate (AlPO) dielectric films were studied to determine how water desorbs and absorbs on heating and cooling, respectively. In-situ Fourier transform infrared spectroscopy showed a distinct, reversible mono- to bidentate phosphate structural change associated with water loss and uptake. Temperature programmed desorption measurements on a 1-μm thick AlPO film revealed water sorption was inhibited by an aqueous-processed HfO2 capping film only 11-nm thick. The HfO2 capping film prevents water resorption, thereby preserving the exceptional performance of AlPO as a thin-film dielectric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call