Abstract

HypothesisNon-ionic surfactants containing polyethylene oxide (PEO) chains are widely used in drug formulations, cosmetics, paints, textiles and detergents. High quality molecular dynamics models for PEO surfactants can give us detailed, atomic-scale information about the behavior of surfactant/water mixtures. SimulationsWe used two molecular dynamics force fields (FFs), 2016H66 and 53A6DBW, to model the simple non-ionic PEO surfactant, hexaoxyethylene dodecyl ether (C12E6). We investigated surfactant/water mixtures that span the phase diagram of starting from randomly distributed arrangements. In some cases, we also started with prebuilt, approximate models. The simulations results were compared with the experimentally observed phase behavior. FindingsOverall, this study shows that the spontaneous self-assembly of PEO non-ionic surfactants into different colloidal structures can be accurately modeled with MD simulations using the 2016H66 FF although transitions to well-formed hexagonal phase are slow. Of the two FFs investigated, the 2016H66 FF better reproduces the experimental phase behavior across all regions of the C12E6/water phase diagram.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.