Abstract

The aqueous iron(IV) ion, Fe(IV)(aq)O(2+), generated from O(3) and Fe(aq)(2+), reacts rapidly with various oxygen atom acceptors (sulfoxides, a water-soluble triarylphosphine, and a thiolatocobalt complex). In each case, Fe(IV)(aq)O(2+) is reduced to Fe(aq)(2+), and the substrate is oxidized to a product expected for oxygen atom transfer. Competition methods were used to determine the kinetics of these reactions, some of which have rate constants in excess of 10(7) M(-1) s(-1). Oxidation of dimethyl sulfoxide (DMSO) has k = 1.26 x 10(5) M(-1) s(-1) and shows no deuterium kinetic isotope effect, k(DMSO-d(6)) = 1.23 x 10(5) M(-1) s(-1). The Fe(IV)(aq)O(2+)/sulfoxide reaction is the product-forming step in a very efficient Fe(aq)(2+)-catalyzed oxidation of sulfoxides by ozone. This catalytic cycle, combined with labeling experiments in H(2)(18)O, was used to determine the rate constant for the oxo-group exchange between Fe(IV)(aq)O(2+) and solvent water under acidic conditions, k(exch) = 1.4 x 10(3) s(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.