Abstract
Bi2Te3 nanoparticles (NPs) were synthesized with controlled mean diameters of 58 nm, 82 nm, and 100 nm using an aqueous chemical reduction, in which ascorbic acid was used instead of the commonly employed toxic reducing agent. In general, organic capping agents remained on the Bi2Te3 NP surfaces, which prevented the sintering of Bi2Te3 NPs and affected their thermoelectric properties. Not only the capping agent, but also water from the synthesis process, remained on the Bi2Te3 NPs even after their consolidation by spark plasma sintering. Consequently, evaporation of the water led to the collapse of sintered Bi2Te3 NPs when heated above 100°C. After the complete removal of the surface impurities and water, the sintered Bi2Te3 NPs became stable. To achieve enhanced thermoelectric properties, a high relative density of ∼ 96% was achieved in the sintered Bi2Te3 NPs without large grain growth by optimizing the sintering temperature and holding time. Subsequently, their thermoelectric properties showed that zT of the sintered Bi2Te3 NPs 100 nm in size is higher (0.41 at 390 K) than those of smaller sizes (58 nm and 82 nm). Finally, the effect of grain size, particle size and density on their thermoelectric properties is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.