Abstract
As a field-assisted technique, spark plasma sintering (SPS) enables densification of specimens in a very short period of time compared to other sintering techniques. For high performance thermoelectric material synthesis, SPS is widely used to fabricate nanograin-structured thermoelectric materials by rapidly densifying the nanopowders suppressing grain growth. However, the microstructural evolution behavior of thermoelectric materials by SPS, another important process during sintering, has been rarely studied. Here, we explore SPS as a tool to control the microstructure by long-time SPS. Using p-type (Bi0.25Sb0.75)2Te3 thermoelectric materials as a model system, we systematically vary SPS temperature and time to understand the correlations between SPS conditions, microstructural evolution, and the thermoelectric properties. Our results show that the relatively low eutectic temperature (∼420 °C) and the existence of volatile tellurium (Te) are critical factors to determine both microstructure and thermoelectric property. In the liquid-phase sintering regime, rapid evaporation of Te leads to a strong dependence of thermoelectric property on SPS time. On the other hand, in the solid-phase sintering regime, there is a weak dependence on SPS time. The optimum thermoelectric figure-of-merit (Z) of 2.93 × 10−3/K is achieved by SPS at 500 °C for 30 min. Our results will provide an insight on the optimization of SPS conditions for materials containing volatile elements with low eutectic temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.