Abstract

Abstract Observed degradation of aquatic systems at Big Stone National Wildlife Refuge, located in west-central Minnesota, have been associated with sediment-laden inflows from riverine systems. To support management, a study was conducted during 2013–2014 with overall goals of characterizing the aquatic invertebrate and vegetation communities of the Big Stone National Wildlife Refuge and exploring relations between these communities and various water-quality parameters. Sample sites were located along an observed vegetation gradient and assigned to three predetermined habitat zones for comparison purposes: upstream, transition, and downstream. Of the 12 species of aquatic vegetation that were identified, invasive narrowleaf cattail Typha angustifolia dominated the upstream zone (observed at >90% of sample locations), coontail Ceratophyllum demersum and narrowleaf cattail were most common in the transition zone (collected or observed at 100 and 83% of sample locations, respectively), and coontail and narrowleaf pondweed Potamogeton strictifolius were most common in the downstream zone (collected at 100 and 64% of sample locations, respectively). Measured values for the water-quality parameters varied among dates, reflecting the continually fluctuating nature of riverine systems. Based on general observations across sample dates, turbidity and dissolved oxygen concentrations were greatest in the upstream zone sample sites, while oxidation-reduction potential was greatest in the downstream zone sites. There were 115 unique aquatic invertebrate taxa identified to varying levels of taxonomic resolution. Results suggested that there were overall differences in invertebrate biomass among the sample dates, but that there were no strong trends among the sample zones. Aquatic invertebrates and vegetation communities, along with the water-quality parameters, varied temporally and showed irregular relations among the sample zones. These general observations emphasize the importance of temporally and spatially intensive sampling to account for natural variation. Moreover, short- and long-term streamflow and water-level information obtained for this study demonstrated substantial variability that must be considered when conducting biotic inventories and monitoring water quality, as well as when using such data to assess management options. Periodic monitoring of wetlands and associated streamflows, along with sediment loads and water quality of inflows, should allow Big Stone National Wildlife Refuge staff to identify habitat degradation and potential contributing factors, and to develop strategies to achieve specific management objectives and goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call