Abstract

Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants that are coming under increasing scrutiny. Currently, there is a paucity of effects data for marine aquatic life, limiting the assessment of ecological risks and compliance with water quality policies. In the present study, the toxicity of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to four standard marine laboratory toxicity testing species, encompassing five endpoints, were evaluated: 1) 96-h embryo-larval normal development for the purple sea urchin (Strongylocentrotus purpuratus); 2) 48-h embryo-larval normal development and normal survival for the Mediterranean mussel (Mytilus galloprovincialis); 3) 96-h survival of opossum shrimp (Americamysis bahia); and 4) 24-h light output for the bioluminescent dinoflagellate Pyrocystis lunula. All species were tested using standard United States Environmental Protection Agency (USEPA) and/or American Society for Testing and Materials (ASTM) International protocols. For PFOS and PFOA, the order of species sensitivity, starting with the most sensitive, was M. galloprovincialis, S. purpuratus, P. lunula, and A. bahia. The range of median lethal or median effect concentrations for PFOS (1.1–5.1 mg L−1) and PFOA (10–24 mg L−1) are comparable to the relatively few toxicity effect values available for marine species. In addition to providing effects data for PFOA and PFOS, this study indicates these species and endpoints are sensitive to PFAS such that their use will be appropriate for deriving toxicity data with other PFAS in marine ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call