Abstract

Apurinic/apyrimidinic (AP) endonuclease (APE) is a multifunctional protein possessing both DNA repair and redox regulatory activities. In base excision repair (BER), APE is responsible for processing spontaneous, chemical, or monofunctional DNA glycosylase-initiated AP sites via its 5'-endonuclease activity and 3'-"end-trimming" activity when processing residues produced as a consequence of bifunctional DNA glycosylases. In this study, we have fully characterized a mammalian model of APE haploinsufficiency by using a mouse containing a heterozygous gene-targeted deletion of the APE gene (Apex(+/-)). Our data indicate that Apex(+/-) mice are indeed APE-haploinsufficient, as exhibited by a 40-50% reduction (p < 0.05) in APE mRNA, protein, and 5'-endonuclease activity in all tissues studied. Based on gene dosage, we expected to see a concomitant reduction in BER activity; however, by using an in vitro G:U mismatch BER assay, we observed tissue-specific alterations in monofunctional glycosylase-initiated BER activity, e.g. liver (35% decrease, p < 0.05), testes (55% increase, p < 0.05), and brain (no significant difference). The observed changes in BER activity correlated tightly with changes in DNA polymerase beta and AP site DNA binding levels. We propose a mechanism of BER that may be influenced by the redox regulatory activity of APE, and we suggest that reduced APE may render a cell/tissue more susceptible to dysregulation of the polymerase beta-dependent BER response to cellular stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.