Abstract

Extracellular vesicles (EVs) represent an important mode of intercellular communication in both disease and developmental biology, exposing their potential in diagnostics and therapeutics. Recently, aptamer-based sensors, i.e. aptasensors, have been gradually applied in EV analysis due to their high selectivity and sensitivity. A fluorescent aptasensor enables easy readout by flow cytometry (FCM) and has more accuracy and convenience than conventional immunoassays for EV analysis. Here, we develop a fluorescent aptasensor-based method for quantitative analysis of nano-sized membrane vesicles by using high-resolution FCM. EVs as small as 100 nm are detected and quantified using a dual-staining procedure with the fluorescent aptasensor targeting CD63 and a cytoplasmic dye. Nano-sized EVs derived from bone marrow mesenchymal stem cells, human neural stem cells and human cornea epithelial cells are analyzed, and the result shows that their amount varies from 6.79 × 106 mL-1 to 2.08 × 108 mL-1 in culture media. The technique is also used to evaluate the bioactivity of EVs and, in the future, it may develop into a versatile tool to analyze and quantify EVs from a variety of biological objects with conventional cytometric instruments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.