Abstract

This study describes a new kind of aptamer-based electrochemical sensor that is not based on the target binding-induced conformational change of the aptamers by using a 15-mer thrombin-binding aptamer (5'-GGTTGGTGTGGTTGG-3') as the model oligonucleotide. The sensors are developed by first self-assembling the aptamer (i.e. a thrombin-binding aptamer) onto an Au electrode and then hybridizing the assembled aptamer with a ferrocene (Fc)-labeled short aptamer-complementary DNA oligonucleotide to form an electroactive double-stranded DNA (ds-DNA) oligonucleotide onto the Au electrode. The binding of the target (i.e. thrombin) towards the aptamer essentially destroys the Watson-Crick helix structure of the ds-DNA oligonucleotide assembled onto the electrode and leads to the dissociation of the Fc-labeled short complementary DNA oligonucleotide from the electrode surface to the solution, resulting in a decrease in the current signal obtained at the electrode, which can be used for the determination of the target. With the thrombin-binding aptamer as the model oligonucleotide, the current decrease obtained with the aptamer-based electrochemical sensors is linear with the concentration of thrombin within the concentration range from 0 to 10 nM (DeltaI/nA = 6.7C(thrombin)/nM + 2.8, gamma = 0.975). Unlike most kinds of existing aptamer-based electrochemical sensor, the electrochemical aptasensors demonstrated here are not based on the conformational change of the aptamers induced by the specific target binding. Moreover, the aptasensors are essentially label-free and are very responsive toward the targets. This study may pave a facile and general way to the development of aptamer-based electrochemical sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.