Abstract

Construction of new enzyme reactor based on aptamer functionalized magnetic nanoparticles conjugated organic framework (COF) for acetylcholinesterase immobilization has been an enabling endeavor in this work. The aptamer against acetylcholinesterase was selected through a method based on capillary electrophoresis in one round. A new magnetic COF material rich of carboxyl groups was firstly synthesized, and its surface was then modified with the selected aptamer through covalently linking. Acetylcholinesterase was immobilized to fabricate the enzyme reactor Fe3O4@COF-Apt-AChE through the high affinity and specificity with its binding aptamer. The as constructed enzyme reactor was comprehensively characterized and the key factors that affected its catalysis efficiency were investigated in detail. Owing to the surface modification of the magnetic COF materials by aptamer for acetylcholinesterase immobilization, the immobilized enzyme exhibited improved substrates affinity. What’s more, good reusability (more than 8 times) and prolonged stability (enzyme activity still kept at 90% after 42 days) were also achieved. Finally, the enzyme reactor could be applied in AChE inhibitors screening, which expanded its application capability. The proposed protocol not only paves a new way for fabrication of novel aptamer functionalized magnetic COF materials as enzyme reactors, but also indicates a broadened application of the integration of aptamer and its enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.