Abstract
The authors have synthesized spindle-like ZnO nanorods closely anchored to CdS nanoparticles (NPs) placed on gold NPs (ZnO-CdS@Au). It is shown that the ZnO-CdS@Au nanocomposite can serve as a photoactive material for use in photoelectrochemical (PEC) detection by efficiently absorbing light and then promoting electron transfer. A visible light-driven PEC detection platform for tetracycline (TET) was fabricated by placing the nanocomposite on an ITO and immobilizing the TET-binding aptamer as biorecognition element. PEC can be quantified by applying a bias potential of + 0.4 V (vs. SCE) and visible light irradiation. The aptamer on the electrode specifically captures the TET present in the solution to produce a restored photocurrent signal through the reaction between the captured TET and the photogenerated holes. The electrode has a linear response in the 50 to 200 nM TET concentration range, with a 4.5 nM detection limit (at an S/N ratio of 3). In our perception, this novel PEC detection strategy based on ZnO-CdS@Au nanocomposite demonstrated an ultrasensitive method for TET detection with high selectivity and good stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have