Abstract

Multiple sclerosis (MS) is a severe progressive autoimmune-inflammatory, demyelinating process in the central nervous system (CNS) with heterogeneous neurological symptoms appearing as a consequence of myelin break down. Myelin basic protein (MBP) makes up to 30 % of the CNS myelin [1] and it is known to be released into the cerebrospinal fluid (CSF) as a bioindicator of MS. Autoimmune encephalomyelitis (EAE) is a mice model of MS widely used for research and development of new treatments [2]. Herein, MBP specific aptamer developed for possible therapeutic purposes in mouse model [3] was applied as a bioreceptor for MBP recognition. A nanobiosensor for MBP detection and monitoring was developed by using graphene oxide (GO) nanoparticles integrated onto the screen-printed carbon electrodes (SPCE) and aptamer immobilized to create a bioactive layer on the sensor surface for MBP binding. The measurements were carried out using electrochemical impedance spectrometry (EIS). Validation studies were carried out in a biological matrix (artificial CSF) containing MBP, and MSA. The aptasensor had LOD in artificial CSF 0.01 ng/mL and showed its usability in the concentration range of 0.01 … 64 ng/mL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.