Abstract

A branched DNA amplification strategy was employed to design a colorimetric aptameric biosensor using unmodified gold nanoparticles (AuNPs). First, a programmed DNA dendritic nanostructure was formed using two double-stranded substrate DNAs and two single-stranded auxiliary DNAs as assembly components via a target-assisted cascade amplification reaction, and it was then captured by DNA sensing probe-stabilized AuNPs. The release of sensing probes from AuNPs led to the formation of unstable AuNPs, promoting salt-induced aggregation. By integrating the signal amplification capacity of the branched DNA cascade reaction and unmodified AuNPs as a sensing indicator, this amplified colorimetric sensing strategy allows protein detection with high sensitivity (at the femtomole level) and selectivity. The limit of detection of this approach for VEGF was lower than those of other aptamer-based detection methods. Moreover, this assay provides modification-free and enzyme-free protein detection without sophisticated instrumentation and might be generally applicable to the detection of other protein targets in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.