Abstract

Aprotinin, a non-specific serine protease inhibitor, reduces postoperative bleeding after coronary artery surgery. The mechanism of action for this 'blood-sparing' effect of aprotinin is only partially clarified. We therefore aimed to investigate the effect of aprotinin on the release of nitric oxide (NO), a vasodilator and antiaggregant factor, from rat coronary microvascular endothelial cells and on the NO-mediated endothelium-dependent relaxation of rat thoracic aorta. Endothelium-intact and endothelium-denuded thoracic aortic rings from Wistar rats (250-300 g) were suspended in organ chambers. Contractile and relaxant responses in the absence and presence of aprotinin (125, 250 and 500 KIU/ml) were recorded via a mechanotransducer. Coronary microvascular endothelial cells (CMEC) were isolated on a Langendorff system by collagenase perfusion of the hearts from the same rats. Calcium ionophore- (1 microM) induced release of NO from confluent cells was determined spectrophotometrically by measuring its stable metabolites, nitrite and nitrate, via Griess reaction. Aprotinin selectively enhanced phenylephrine-induced contractions in endothelium-intact rat thoracic aortic rings, but not in the endothelium-denuded rings. The use of a nitric oxide synthesis inhibitor Nomega-nitro-L-arginine methyl ester (100 microM) on endothelium-intact rings produced a similar increase in phenylephrine-induced contractions. KCl-induced contractions remained unaltered. Aprotinin inhibited acetylcholine-, calcium ionophore- and L-arginine-induced endothelium-dependent relaxations, but not sodium nitroprusside-induced endothelium-independent relaxation. Aprotinin had no significant effect on basal nitrite-nitrate release from CMEC, while it inhibited calcium ionophore-induced total nitrite accumulation in the supernatants. Aprotinin selectively impairs endothelium-dependent relaxation as well as basal NO availability in rat thoracic aortic rings and inhibits NO release from rat CMEC. This effect of the drug may contribute to its 'blood-sparing' action and may also account for the increase in perioperative restenosis risk observed in clinical practice during aprotinin therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call