Abstract

Nitric oxide (NO) and the mitogenic peptide angiotensin II (Ang II) have been implicated in endothelial cell growth. However, the putative relationship between these two opposing agents with respect to endothelial cell growth remains unknown. In this study, proliferating and confluent rat coronary microvascular endothelial cells (CMEC) were treated with different doses of Ang II, Ca2+ ionophore A23187, or valsartan (an Ang II type 1 (AT1) receptor inhibitor) alone or in combination for 24 h before measuring the nitrite levels as an index of NO generation. NO production and endothelial NO synthase (eNOS) mRNA/protein expression were found to be 3-fold greater in proliferating vs. quiescent CMEC. Treatments of CMEC with Ang II or Ca2+ ionophore A23187 equally increased NO production without altering the fold-difference in the basal release of NO from proliferating vs. confluent CMEC. Valsartan abolished NO production in CMEC treated with Ang II but not Ca2+ ionophore A23187. Treatments of endothelium-intact vascular rings with Ang II (1 nmol/l to 10 micromol/l) plus valsartan or PD-123319, an Ang II type 2 (AT2) receptor inhibitor, attenuated vascular responses to acetylcholine in an Ang II dose-dependent manner. In these rings, phenylephrine produced significant increases in contractile responses only at nmol/l concentrations of Ang II. In contrast, pharmacological and mechanical inactivation of endothelium enhanced contractile responses to phenylephrine at micromol/I concentrations of Ang II. These data demonstrate that Ang II stimulates NO production in CMEC in both an AT1- and an AT2 receptor-regulated manner, and that this stimulation of NO may be beneficial in counterbalancing the direct vasoconstrictor effect of Ang II on underlying smooth muscle cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.