Abstract

Snake venom-derived platelet aggregation inhibitors can be promising antiplatelet medications that can allow to avoid the risk of bleeding and treatment resistance, particularly in aspirin-resistant patients. Our study aimed to assess the effectiveness of a platelet aggregation inhibitor derived from Echis multisquamatis snake venom in various settings, including in vitro, in vivo, and ex vivo. Methods. We examined a polypeptide from Echis multisquamatis venom, purified using a recently developed chromatography protocol, across multiple models. This polypeptide was introduced into platelet-rich blood plasma and administered intravenously to rats. The effects on platelet aggregation were assessed using aggregometry, focusing on ADP-induced aggregation. Results & Discussion. Our findings revealed that a concentration of 0.040 mg/ml significantly reduced platelet aggregation in vitro. Remarkably, this dosage also proved effective when administered intravenously in laboratory animals, reaffirming its potential as a robust antiplatelet agent. In the final phase of our study, the polypeptide demonstrated its ability to inhibit platelet aggregation in blood plasma of pregnant woman with aspirin resistance, presenting a promising avenue for innovative treatment approaches in such cases. Conclusion. This study underscores the potential of the Echis multisquamatis venom-derived polypeptide as a promising antiplatelet agent, effective in diverse scenarios, including aspirin resistance. Further research and clinical trials are imperative to fully harness its therapeutic potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.