Abstract

This paper presents an approach to obtaining higher order approximations to limit cycles of an autonomous multi-degree-of-freedom system with a single cubic nonlinearity based on a first approximation involving first and third harmonics obtained with the harmonic balance method. This first approximation, which is similar to one which has previously been reported in the literature, is an analytical solution, except that the frequency has to be obtained numerically from a polynomial equation of degree 16. An improved solution is then obtained in a perturbation procedure based on the refinement of the harmonic balance solution. The stability of the limit cycles obtained is then investigated using Floquet analysis.The capability of this approach to refine the results obtained by the harmonic balance first approximation is demonstrated, by direct comparison with time domain simulation and frequency components obtained using the Discrete Fourier Transform. The particular case considered was based on an aeroelastic analysis of an all-moving control surface with a nonlinearity in the torsional degree-of-freedom of the root support, and parameters corresponding to air speed, together with linear stiffness and viscous damping of the root support were varied. It is also shown, for the cases considered, how the method can reveal further bifurcational behaviour of the system beyond the initial Hopf bifurcations which first lead to the onset of limit cycle oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.