Abstract
This paper is concerned with approximation properties of orthonormal mapped Chebyshev functions (OMCFs) in unbounded domains. Unlike the usual mapped Chebyshev functions which are associated with weighted Sobolev spaces, the OMCFs are associated with the usual (non-weighted) Sobolev spaces. This leads to particularly simple stiffness and mass matrices for higher-dimensional problems. The approximation results for both the usual tensor product space and hyperbolic cross space are established, with the latter particularly suitable for higher-dimensional problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.