Abstract

A method is proposed to obtain the high-performance artificial boundary conditions for solving the time-dependent wave guide problems in an unbounded domain. Using the variable separation method, it is possible to reduce the spatial variables of the wave equation by one. Furthermore, introducing auxiliary functions makes the reduced wave equation a linear first-order ordinary differential system with one control input. Solving the closed-loop control system, a stable and accurate artificial boundary condition is obtained in a rigorous mathematical manner. Numerical examples have demonstrated the effectiveness of the proposed artificial boundary conditions for the time-dependent wave guide problems in unbounded domain. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call