Abstract
The Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) is the well-known combinatorial optimization problem having numerous valuable applications in operations research. Unlike the classic CVRP (without time windows constraints), approximation algorithms with theoretical guarantees for the CVRPTW are still developed much less, even for the Euclidean plane. In this paper, perhaps for the first time, we propose an approximation scheme for the planar CVRPTW with non-uniform splittable demand combining the well-known instance decomposition framework by A. Adamaszek et al. and Quasi-Polynomial Time Approximation Scheme (QPTAS) by L. Song et al. Actually, for any \(\varepsilon \in (0,1)\) the scheme proposed finds a \((1+\varepsilon )\)-approximate solution of the problem in polynomial time provided the capacity q and the number p of time windows does not exceed \(2^{\log ^\delta n}\) for some \(\delta =O(\varepsilon )\). For any fixed p and q the scheme is Efficient Polynomial Time Approximation Scheme (EPTAS) with subquadratic time complexity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have