Abstract

SynopsisGiven a Banach space X, we investigate the behaviour of the metric projection PF onto a subset F with a bounded complement.We highlight the special role of points at which d(x, F) attains a maximum. In particular, we consider the case of X as a Hilbert space: this case is related to the famous problem of the convexity of Chebyshev sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.