Abstract

We study the long-time behavior of fully discretized semilinear SPDEs with additive space-time white noise, which admit a unique invariant probability measure $\mu$. We show that the average of regular enough test functions with respect to the (possibly non unique) invariant laws of the approximations are close to the corresponding quantity for $\mu$. More precisely, we analyze the rate of the convergence with respect to the different discretization parameters. Here we focus on the discretization in time thanks to a scheme of Euler type, and on a Finite Element discretization in space. The results rely on the use of a Poisson equation; we obtain that the rates of convergence for the invariant laws are given by the weak order of the discretization on finite time intervals: order $1/2$ with respect to the time-step and order $1$ with respect to the mesh-size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.