Abstract

Abstract In this paper we give a partial response to one of the most important statistical questions, namely, what optimal statistical decisions are and how they are related to (statistical) information theory. We exemplify the necessity of understanding the structure of information divergences and their approximations, which may in particular be understood through deconvolution. Deconvolution of information divergences is illustrated in the exponential family of distributions, leading to the optimal tests in the Bahadur sense. We provide a new approximation of I-divergences using the Fourier transformation, saddle point approximation, and uniform convergence of the Euler polygons. Uniform approximation of deconvoluted parts of I-divergences is also discussed. Our approach is illustrated on a real data example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.