Abstract

ABSTRACTAffiliation network is one kind of two-mode social network with two different sets of nodes (namely, a set of actors and a set of social events) and edges representing the affiliation of the actors with the social events. Although a number of statistical models are proposed to analyze affiliation networks, the asymptotic behaviors of the estimator are still unknown or have not been properly explored. In this article, we study an affiliation model with the degree sequence as the exclusively natural sufficient statistic in the exponential family distributions. We establish the uniform consistency and asymptotic normality of the maximum likelihood estimator when the numbers of actors and events both go to infinity. Simulation studies and a real data example demonstrate our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.