Abstract
In this paper, some iterative schemes are given to approximate a fixed point of the nonexpansive non-self-mapping and nonexpansive self-mapping. Furthermore, the strong convergence of the scheme to a fixed point is shown in a Banach space with uniformly Gâteaux differentiable norm. The theorems extend and improve some corresponding results of Matsushita and Takahashi [S. Matsushita, W. Takahashi, Strong convergence theorems for nonexpansive nonself-mappings without boundary conditions, Nonlinear Anal. 68 (2008) 412–419], Chang et al. [S.S. Chang, H.W. Joseph Lee, C.K. Chan, On Reich’s strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, Nonlinear Anal. 66 (2007) 2364–2374], Chidume and Chidume [C.E. Chidume, C.O. Chidume, Iterative approximation of fixed points of nonexpansive mappings, J. Math. Anal. Appl. 318 (2006) 288–295] and Suzuki [T. Suzuki, A sufficient and necessary condition for Halpern-type strong convergence to fixed point of nonexpansive mappings, Proc. Amer. Math. Society 135 (1) (2007) 99–106].
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have