Abstract
Linear spaces of continuous functions of real variables closed under the superposition operation are considered. It has been proved that when such a space contains constants, linear functions, and at least one nonlinear function, it is dense in the space of all continuous functions in the topology of uniform convergence on compact sets. So, the approximation of continuous functions of several variables by an arbitrary nonlinear continuous function of one variable, linear functions, and their superpositions is possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.