Abstract
This paper presents the optimal design of a SF6 gas circuit breaker to improve the capacitive current interrupting performance. The objective function for the optimization is the minimal difference between the breakdown voltage and the applied voltage. To obtain the dynamic gas properties, the axisymmetric Euler equation is solved using the finite volume fluid in cell method. Breakdown voltage is calculated using the empirical equation, which is a function of the gas density and the electric field intensity. To facilitate the optimization process, which is computationally intensive, the Kriging model is employed as an approximation model. A sequential approximation technique is developed to improve the accuracy of the Kriging model and to reduce the number of real function calls. The developed optimization technique was applied to the design of a 145-kV gas circuit breaker. It was verified that the optimized circuit breaker has better interrupting performance than the original model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.