Abstract

In this paper, we establish an abstract framework for the approximation of the invariant probability measure for a Markov semigroup. Following Pagès and Panloup (2022) we use an Euler scheme with decreasing step (unadjusted Langevin algorithm). Under some contraction property with exponential rate and some regularization properties, we give an estimate of the error in total variation distance. This abstract framework covers the main results in Pagès and Panloup (2022) and Chen et al. (2023). As a specific application we study the convergence in total variation distance to the invariant measure for jump type equations. The main technical difficulty consists in proving the regularization properties — this is done under an ellipticity condition, using Malliavin calculus for jump processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.