Abstract
Energy-efficiency has been an important system issue in hardware and software designs for both real-time embedded systems and server systems. This research explores systems with probabilistic distribution on the execution time of realtime tasks on homogeneous multiprocessor platforms with the capability of dynamic voltage scaling (DVS). The objective is to derive a task partition which minimizes the expected energy consumption for completing all the given tasks in time. We give an efficient 1.13-approximation algorithm and a polynomial-time approximation scheme (PTAS) to provide worst-case guarantees for the strongly NP-hard problem. Experimental results show that the algorithms can effectively minimize the expected energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.