Abstract

The polynomial-time solvable k-hurdle problem is a natural generalization of the classical s-t minimum cut problem where we must select a minimum-cost subset S of the edges of a graph such that |p∩S|≥k for every s-t path p. In this paper, we describe a set of approximation algorithms for “k-hurdle” variants of the NP-hard multiway cut and multicut problems. For the k-hurdle multiway cut problem with r terminals, we give two results, the first being a pseudo-approximation algorithm that outputs a (k−1)-hurdle solution whose cost is at most that of an optimal solution for k hurdles. Secondly, we provide a $2(1-\frac{1}{r})$-approximation algorithm based on rounding the solution of a linear program, for which we give a simple randomized half-integrality proof that works for both edge and vertex k-hurdle multiway cuts that generalizes the half-integrality results of Garg et al. for the vertex multiway cut problem. We also describe an approximation-preserving reduction from vertex cover as evidence that it may be difficult to achieve a better approximation ratio than $2(1-\frac{1}{r})$. For the k-hurdle multicut problem in an n-vertex graph, we provide an algorithm that, for any constant e>0, outputs a ⌈(1−e)k⌉-hurdle solution of cost at most O(log n) times that of an optimal k-hurdle solution, and we obtain a 2-approximation algorithm for trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.