Abstract
The edge intersection graphs of paths on a grid (or EPG graphs) are graphs whose vertices can be represented as simple paths on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. We consider the case of single-bend paths, namely, the class known as B 1-EPG graphs. The motivation for studying these graphs comes from the context of circuit layout problems. It is known that recognizing B 1-EPG graphs is NP-complete, nevertheless, optimization problems when given a set of paths in the grid are of considerable practical interest. In this paper, we show that the coloring problem and the maximum independent set problem are both NP-complete for B 1-EPG graphs, even when the EPG representation is given. We then provide efficient 4-approximation algorithms for both of these problems, assuming the EPG representation is given. We conclude by noting that the maximum clique problem can be optimally solved in polynomial time for B 1-EPG graphs, even when the EPG representation is not given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.