Abstract

We are given a sequence of measurement vectors and a possibly nonlinear relation to a corresponding sequence of state vectors. We are also given a possibly nonlinear model for the dynamics of the state vectors. The goal is to estimate (invert) for the state vectors when there is noise in both the measurements and the dynamics of the state. In general, obtaining the minimum variance (Bayesian) estimate of the state vectors is difficult because it requires evaluations of high dimensional integrals with no closed analytic form. We use a block tridiagonal Cholesky algorithm to simulate from the Laplace approximation for the posterior of the state vectors. These simulations are used as a proposal density for the random-walk Metropolis algorithm to obtain samples from the actual posterior. This provides a means to approximate the minimum variance estimate, as well as confidence intervals, for the state vector sequence. Simulations of a fed-batch bio-reactor model are used to demonstrate that this approach obtains better estimates and confidence intervals than the iterated Kalman smoother.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.