Abstract

We consider the smoothing problem of estimating a sequence of state vectors given a nonlinear state space model with additive white Gaussian noise, and measurements of the system output. The system output may also be nonlinearly related to the system state. Often, obtaining the minimum variance state estimates conditioned on output data is not analytically intractable. To tackle this difficulty, a Markov chain Monte Carlo technique is presented. The proposal density for this method efficiently draws samples from the Laplace approximation of the posterior distribution of the state sequence given the measurement sequence. This proposal density is combined with the Metropolis–Hastings algorithm to generate realizations of the state sequence that converges to the proper posterior distribution. The minimum variance estimate and confidence intervals are approximated using these realizations. Simulations of a fed-batch bioreactor model are used to demonstrate that the proposed method can obtain significantly better estimates than the iterated Kalman-Bucy smoother.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.