Abstract

Ocean volume and tracer transports are commonly computed on density surfaces because doing so approximates the semi-Lagrangian mean advective transport. The resulting density-averaged transport can be related approximately to Eulerian-averaged quantities via the Temporal Residual Mean (TRM), valid in the limit of small isopycnal height fluctuations. This article builds on a formulation of the TRM for volume fluxes within Neutral Density surfaces, (the “NDTRM”), selected because Neutral Density surfaces are constructed to be as neutral as possible while still forming well-defined surfaces. This article derives a TRM, referred to as the “Neutral TRM” (NTRM), that approximates volume fluxes within surfaces whose vertical fluctuations are defined directly by the neutral relation. The purpose of the NTRM is to more closely approximate the semi-Lagrangian mean transport than the NDTRM, because the latter introduces errors associated with differences between the instantaneous state of the modeled/observed ocean and the reference climatology used to assign the Neutral Density variable. It is shown that the NDTRM collapses to the NTRM in the limiting case of a Neutral Density variable defined with reference to the Eulerian-mean salinity, potential temperature and pressure, rather than an external reference climatology, and therefore that the NTRM approximately advects this density variable. This prediction is verified directly using output from an idealized eddy-resolving numerical model. The NTRM therefore offers an efficient and accurate estimate of modeled semi-Lagrangian mean transports without reference to an external reference climatology, but requires that a Neutral Density variable be computed once from the model’s time-mean state in order to estimate isopycnal and diapycnal components of the transport.

Highlights

  • Accurate quantification of the ocean’s meridional overturning circulation (MOC) is required to infer oceanic transport of heat and other tracers around the globe [1,2]

  • The separation of the semi-Lagrangian mean transport into mean and eddy components can be made explicit via the Temporal Residual Mean (TRM) formulation, which is valid in the asymptotic limit of small isopycnal height fluctuations [9,20,21]

  • Neutral Surfaces are globally ill-defined [29]. This means that isoneutral volume fluxes cannot be associated with a globally-defined, stably-stratified density variable [30], which is desireable for quantifying global circulation and water mass transformation [5,25,31]. This motivates us to return to the Neutral Density Temporal Residual Mean (NDTRM), which is associated with a globally-defined density variable, and consider the special case of a Neutral Density constructed with reference to the Eulerian-mean salinity, potential temperature and pressure

Read more

Summary

Introduction

Accurate quantification of the ocean’s meridional overturning circulation (MOC) is required to infer oceanic transport of heat and other tracers around the globe [1,2]. Neutral Surfaces that should heave vertically under perfectly adiabatic motions [27,28], and that they are best suited for calculation of the semi-Lagrangian mean transport [9] This means that isoneutral volume fluxes cannot be associated with a globally-defined, stably-stratified density variable [30], which is desireable for quantifying global circulation and water mass transformation [5,25,31] This motivates us to return to the NDTRM, which is associated with a globally-defined density variable, and consider the special case of a Neutral Density constructed with reference to the Eulerian-mean salinity, potential temperature and pressure.

Approximating Volume Fluxes within Neutral Density Surfaces
Approximating Volume Fluxes within Local Neutral Surfaces
Vertical Fluctuations of Local Neutral Surfaces
Equivalence to Fluctuations of Locally-Referenced Potential Density Surfaces
Comparison and Assessment Using an Idealized Numerical Model
Model Configuration
Constructing Neutral Density from the Model’s Mean State
Comparing Diagnosed and TRM Transports
Advective Tracer Transport
Findings
Summary and Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.