Abstract

The computation of functions of large sparse matrices f(A) is an important topic in numerical linear algebra and finds application in many fields of applied mathematics and statistics. In previous research we considered ? matrices with compact spectrum ?( A ) ? [a,b] and proposed low degree matrix polynomial approximations p( A ) such that e = ?f( A ) ? p( A ) ? was small on the spectral interval, where the extreme eigenvalues a and b were calculated using Krylov subspace approximation. For the class of matrices examined, the thick restarted Lanczos scheme enabled rapid convergence to the extreme eigenvalues and these Ritz values were used to construct cubic near-minimax Chebyshev least squares approximations of the desired matrix functions. There is a good balance between accuracy and efficiency for this approximation method. The aim of the present study is to extend the previously developed matrix function approximation technique to enable ? matrices with a wider spectrum to be treated using a novel splitting of ?( A ). In this case, the decomposition of f( A ) as a sum of a 'singular' part and a 'regular' part is investigated. To perform the split a projector onto the singular part is here constructed using Krylov subspace approximation. Numerical results for a representative large sparse positive definite matrix appear promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.