Abstract

An operator \(T\) on a complex Hilbert space \(\mathcal {H}\) is called skew symmetric if \(T\) can be represented as a skew symmetric matrix relative to some orthonormal basis for \(\mathcal {H}\). In this paper, we study the approximation of skew symmetric operators and provide a \(C^*\)-algebra approach to skew symmetric operators. We classify up to approximate unitary equivalence those skew symmetric operators \(T\in \mathcal {B(H)}\) satisfying \(C^*(T)\cap \mathcal {K(H)}=\{0\}\). This is used to characterize when a unilateral weighted shift with nonzero weights is approximately unitarily equivalent to a skew symmetric operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.