Abstract
In this paper we obtain necessary and sufficient conditions for a linear bounded operator in a Hilbert space $H$ to have a three-diagonal complex symmetric matrix with non-zero elements on the first sub-diagonal in an orthonormal basis in $H$. It is shown that a set of all such operators is a proper subset of a set of all complex symmetric operators with a simple spectrum. Similar necessary and sufficient conditions are obtained for a linear bounded operator in $H$ to have a three-diagonal complex skew-symmetric matrix with non-zero elements on the first sub-diagonal in an orthonormal basis in $H$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.