Abstract

Many algorithms have been developed for NP-hard problems on graphs with small treewidth k. For example, all problems that are expressible in linear extended monadic second order can be solved in linear time on graphs of bounded treewidth. It turns out that the bottleneck of many algorithms for NP-hard problems is the computation of a tree decomposition of width O(k). In particular, by the bidimensional theory, there are many linear extended monadic second order problems that can be solved on n-vertex planar graphs with treewidth k in a time linear in n and subexponential in k if a tree decomposition of width O(k) can be found in such a time.We present the first algorithm that, on n-vertex planar graphs with treewidth k, finds a tree decomposition of width O(k) in such a time. In more detail, our algorithm has a running time of O(nk3 log k). The previous best algorithm with a running time subexponential in k was the algorithm of Gu and Tamaki [12] with a running time of O(n1+e log n) and an approximation ratio 1.5 + 1/e for any e > 0. The running time of our algorithm is also better than the running time of O(f(k) · n log n) of Reed's algorithm [18] for general graphs, where f is a function exponential in k.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.