Abstract
In the recent past the authors, with collaborators, have published convergence rate results for regularized solutions of linear ill-posed operator equations by avoiding the usual assumption that the solutions satisfy prescribed source conditions. Instead the degree of violation of such source conditions is expressed by distance functions d(R) depending on a radius R ⩾ 0 which is an upper bound of the norm of source elements under consideration. If d(R) tends to zero as R → ∞ an appropriate balancing of occurring regularization error terms yields convergence rates results. This approach was called the method of approximate source conditions, originally developed in a Hilbert space setting. The goal of this paper is to formulate chances and limitations of an application of this method to nonlinear ill-posed problems in reflexive Banach spaces and to complement the field of low order convergence rates results in nonlinear regularization theory. In particular, we are going to establish convergence rates for a variant of Tikhonov regularization. To keep structural nonlinearity conditions simple, we update the concept of degree of nonlinearity in Hilbert spaces to a Bregman distance setting in Banach spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.