Abstract

An approach for solving Fredholm integral equations of the first kind is proposed for in a reproducing kernel Hilbert space (RKHS). The interest in this problem is strongly motivated by applications to actual prospecting. In many applications one is puzzled by an ill-posed problem in space C [ a , b ] or L 2 [ a , b ] , namely, measurements of the experimental data can result in unbounded errors of solutions of the equation. In this work, the representation of solutions for Fredholm integral equations of the first kind is obtained if there are solutions and the stability of solutions is discussed in RKHS. At the same time, a conclusion is obtained that approximate solutions are also stable with respect to ‖ ⋅ ‖ ∞ or ‖ ⋅ ‖ L 2 in RKHS. A numerical experiment shows that the method given in the work is valid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.