Abstract

In this paper, we introduce a novel Gauss–Jacobi quadrature rule designed for infinite intervals, which is specifically applied to the velocity discretization in multi-scale Boltzmann solvers. Our method utilizes a newly formulated bell-shaped weight function for numerical integration. We establish the relationship between this new quadrature and the classical Gauss–Jacobi, as well as the Gauss–Hermite quadrature rules, and we compare the resulting discrete velocity distributions with several commonly used methods. Additionally, we validate the performance of our method through numerical simulations of flows with various Knudsen numbers. The proposed quadrature provides fresh insights into velocity space discretization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.