Abstract

In recent work of the authors the notion of a derivation being approximately semi-inner arose as a tool for investigating (approximate) amenability questions for Banach algebras. Here we investigate this property in its own right, together with the consequent one of approximately semi-amenability. Under certain hypotheses regarding approximate identities this new notion is the same as approximate amenability, but more generally it covers some important classes of algebras which are not approximately amenable, in particular Segal algebras on amenable SIN-groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.