Abstract

AbstractMotivated by the wavelength assignment problem in WDM optical networks, we study path coloring problems in graphs. Given a set of paths P on a graph G, the path coloring problem is to color the paths of P so that no two paths traversing the same edge of G are assigned the same color and the total number of colors used is minimized. The problem has been proved to be NP-hard even for trees and rings.Using optimal solutions to fractional path coloring, a natural relaxation of path coloring, on which we apply a randomized rounding technique combined with existing coloring algorithms, we obtain new upper bounds on the minimum number of colors sufficient to color any set of paths on any graph. The upper bounds are either existential or constructive.The existential upper bounds significantly improve existing ones provided that the cost of the optimal fractional path coloring is sufficiently large and the dilation of the set of paths is small. Our algorithmic results include improved approximation algorithms for path coloring in rings and in bidirected trees. Our results extend to variations of the original path coloring problem arizing in multifiber WDM optical networks.KeywordsPolynomial TimeApproximation RatioWavelength Division MultiplexWavelength AssignmentWavelength Division Multiplex NetworkThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.