Abstract

We propose an approximate polynomial method of moments for a class of first-order linear PDEs (partial differential equations) of hyperbolic type, involving a filtering term with applications to population balance systems with fines removal terms. The resulting closed system of ODEs (ordinary differential equations) represents an extension to a recently published method of moments which utilizes least-square approximations of factors of the PDE over orthogonal polynomial bases. An extensive numerical analysis has been carried out for proof-of-concept purposes. The proposed modeling scheme is generally of interest for control and optimization of processes with distributed parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.