Abstract

Establishing the existence of Nash equilibria for partially observed stochastic dynamic games is known to be quite challenging, with the difficulties stemming from the noisy nature of the measurements available to individual players (agents) and the decentralized nature of this information. When the number of players is sufficiently large and the interactions among agents is of the mean-field type, one way to overcome this challenge is to investigate the infinite-population limit of the problem, which leads to a mean-field game. In this paper, we consider discrete-time partially observed mean-field games with infinite-horizon discounted-cost criteria. Using the technique of converting the original partially observed stochastic control problem to a fully observed one on the belief space and the dynamic programming principle, we establish the existence of Nash equilibria for these game models under very mild technical conditions. Then, we show that the mean-field equilibrium policy, when adopted by each agent, forms an approximate Nash equilibrium for games with sufficiently many agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.