Abstract

It has been proven that the knowledge of an accurate approximation of the Dirichlet-to-Neumann (DtN) map is useful for a large range of applications in wave scattering problems. We are concerned in this paper with the construction of an approximate local DtN operator for time-harmonic elastic waves. The main contributions are the following. First, we derive exact operators using Fourier analysis in the case of an elastic half-space. These results are then extended to a general three-dimensional smooth closed surface by using a local tangent plane approximation. Next, a regularization step improves the accuracy of the approximate DtN operators and a localization process is proposed. Finally, a first application is presented in the context of the On-Surface Radiation Conditions method. The efficiency of the approach is investigated for various obstacle geometries at high frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.