Abstract

Inverse Gaussian is a popular distribution especially in the reliability and life time modelling, and thus the estimation of its unknown parameters has received considerable interest. This paper aims to obtain the Bayes estimators for the two parameters of the inverse Gaussian distribution under varied loss functions (squared error, general entropy and linear exponential). In Bayesian procedure, we consider commonly used non-informative priors such as the vague and Jeffrey’s priors, and also propose using the extension of Jeffrey’s prior. In the case where the two parameters are unknown, the Bayes estimators cannot be obtained in the closed-form. Hence, we employ two approximation methods, namely Lindley and Tierney Kadane (TK) approximations, to attain the Bayes estimates of the parameters. In this paper. the effects of considered loss functions, priors and approximation methods on Bayesian parameter estimation are also presented. The performance of Bayes estimates is compared with the corresponding classical estimates in terms of the bias and the relative efficiency throughout an extensive simulation study. The results of the comparison show that Bayes estimators obtained by TK method under linear exponential loss function using the proposed prior outperform the other estimators for estimating the parameters of inverse Gaussian distribution most of the time. Finally, a real data set is provided to illustrate the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.