Abstract

Nano-optomechanical systems actuated by optical forces enable many interesting scientific and technological applications. They are vulnerable to the effects of surface stress and Casimir forces. Therefore, calculation of optical forces is essential for the reliability applications of these advanced devices. In this paper, an approximate and explicit expression is developed for the evaluation of the optical force existing between a waveguide and a substrate through the effective refractive index. The influences of surface stress and Casimir forces on the pull-in instability of a silicon nano-optomechanical device actuated by optical forces are investigated. It is found that if neglecting the effect of surface stress, the maximum size, which indicates the device can be safely fabricated, will be over-predicted. The surface stress reduces the critical optical power and its effect is more significant for a slender waveguide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.