Abstract
In this paper, we extend fractional-order derivative for the shifted Vieta-Lucas polynomial to generalized-fractional integro-differential equations involving non-local boundary conditions using Galerkin method as transformation technique and obtained N - \delta + 1 system of linear algebraic equations with \lambda i, i = 0, . . . , N unknowns, together with \delta non-local boundary conditions, we obtained (N + 1)- linear equations. The accuracy and effectiveness of the scheme was tested on some selected problems from the literature. Judging from the table of results and figures, we observed that the approximate solution corresponding to the problem that has exact solution in polynomial form gives a closed form solution while problem with non-polynomial exact solution gives better accuracy compared to the existing results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Nigerian Society of Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.